Exposición de instrumentos musicales impresos en 3D

Siguenos:

Categorias:

Calendario bloq

LunMarMieJueVieSabDom
  12345
6789101112
13141516171819
20212223242526
27282930   
       
      1
2345678
9101112131415
16171819202122
23242526272829
3031     
    123
45678910
11121314151617
18192021222324
252627282930 
       
     12
3456789
10111213141516
17181920212223
24252627282930
31      
   1234
567891011
12131415161718
19202122232425
2627282930  
       
1234567
891011121314
15161718192021
22232425262728
293031    
       
     12
3456789
10111213141516
17181920212223
24252627282930
       
  12345
6789101112
13141516171819
20212223242526
2728293031  
       
  12345
6789101112
13141516171819
20212223242526
2728     
       
      1
2345678
9101112131415
16171819202122
23242526272829
3031     

Facebook

Twitter

Suscripción al blog

Exposición de instrumentos musicales impresos en 3D - impresoras 3D
 Exposición de instrumentos musicales impresos en 3D.

Los visitantes del Jewish Museum (Museo Judío) de Florida (Estados Unidos) podrán contemplar hasta el 25 de febrero de 2018 la recién inaugurada exposición de instrumentos musicales impresos en 3D titulado ‘Subjet to interpretation’ (Sujeto a interpretación), obra del matrimonio argentino compuesto por Eric Goldemberg y Verónica Zalcberg, creadores a su vez del estudio Monad, que viene trabajando desde hace años en las posibilidades musicales de la impresión tridimensional, como bien conocen los lectores de imprimalia3D:

http://imprimalia3d.com/noticias/2015/04/19/004637/concierto-tres-instrumentos-impresos-3d

Goldemberg y Zalcberg, naturales de Buenos Aires pero radicados en Miami desde hace unos doce años, llevan tiempo viviendo por temporadas como unas “estrellas de rock”, según declaró el primero de ellos, que hizo un posgrado en la Universidad de Columbia (EE. UU.) y hoy es profesor de arquitectura en la Universidad de Florida.

Eso ocurre cuando llevan sus instrumentos de formas futuristas y sonidos propios de la música experimental de gira para mostrarlos en museos, galerías y festivales tecnológicos de todo el mundo.

Con ellos han visitado ya países como Alemania Reino Unido, Rusia, China, Japón, la República Checa y Estados Unidos.

En el Museo Judío de Florida se muestran seis de estos instrumentos, todos eléctricos, creados en impresoras para reproducir objetos en tres dimensiones y apodados por algunos medios de prensa como los “3DVarius”.

La exposición presenta un violín hecho en una impresora con miles de capas de titanio, un violonchelo en plástico, dos bajos, una guitarra y un instrumento de la familia de las tubas, así como una instalación artística y sonora creada también por Monad Studios y titulada ‘La Cole’, que alude a la conexión entre distintas comunidades judías.

Falta el piano, que a la vista de los modelos hechos en computadora será visualmente el más impresionante de todos estos instrumentos que trascienden la funcionalidad musical.

Goldemberg dijo que a principios de 2018 se presentará el piano, como parte de un acuerdo entre Monad, el tradicional fabricante alemán de pianos Blüthner y Lucid Pianos, con sede en Málaga (España), que se encargará del desarrollo comercial de este instrumento futurista.

El precio de venta del piano Monad será de unos 200.000 euros (unos 235.000 dólares) y podrá “costumizarse” a gusto del cliente, pues se trata tan solo de cambiar colores y formas en un archivo digital.

Según explica Goldemberg, los instrumentos no están pensados para ser utilizados para interpretar piezas o conciertos clásicos, aunque son muchos los músicos que han experimentado con ellos, en muchos casos como un reto pues los hay de una sola cuerda o a lo sumo de dos y les obliga a salirse de su “zona de confort”.

En la recepción inaugural de la exposición, Michael Klotz tocó el violín fabricado en titanio con impresora tridimensional y Jason Calloway, el violonchelo.

Estos dos instrumentos cuentan cada uno con un “piezo”, un pequeño micrófono externo que se conecta con el amplificador y que, según donde se coloque, produce un tipo de sonido.

Además, el compositor Jacob Sudol ha creado unos sonidos interactivos para ‘La Cole’ usando transductores sónicos en cada panel de la instalación.

“Me apasiona la música, pero no sé tocar ningún instrumento”, dice Goldemberg cuando se le pregunta cómo a él y a su esposa Verónica les dio por diseñar estos instrumentos.

Según dice, la idea surgió de un dialogo con un músico, “luthier” y escultor amigo suyo, Scott F. Hall.

Sus formas están inspiradas en la vegetación lujuriosa de Miami y especialmente en los banianos, un tipo de ficus cuyas semillas germinan en una grieta de un árbol huésped o de un muro o edificio y va creciendo hasta que sus raíces aéreas forman un pseudotronco.

“Siempre nos ha obsesionado” ese árbol, dice Verónica Zalcberg. “Seguimos fascinados por las formas de estos árboles y cómo se prenden de troncos existentes. Toda esta instalación (en el Museo Judío de Florida), al fin y al cabo, se trata de raíces y crecimiento”, subraya.

 

Origen: Exposición de instrumentos musicales impresos en 3D

 

Hoy empieza a construirse la impresora 3D más grande de Europa

Siguenos:

Categorias:

Calendario bloq

LunMarMieJueVieSabDom
  12345
6789101112
13141516171819
20212223242526
27282930   
       
      1
2345678
9101112131415
16171819202122
23242526272829
3031     
    123
45678910
11121314151617
18192021222324
252627282930 
       
     12
3456789
10111213141516
17181920212223
24252627282930
31      
   1234
567891011
12131415161718
19202122232425
2627282930  
       
1234567
891011121314
15161718192021
22232425262728
293031    
       
     12
3456789
10111213141516
17181920212223
24252627282930
       
  12345
6789101112
13141516171819
20212223242526
2728293031  
       
  12345
6789101112
13141516171819
20212223242526
2728     
       
      1
2345678
9101112131415
16171819202122
23242526272829
3031     

Facebook

Twitter

Suscripción al blog

Hoy empieza a construirse la impresora 3D más grande de Europa - impresoras 3D

 

Hoy empieza a construirse la impresora 3D más grande de Europa

 

Hoy, día 23 de octubre de 2017, se inicia en Vigo (Pontevedra, España), el intento de cuatro “makers” locales pertenecientes al FabSpace Sociedad Cooperativa Galega de construir la impresora 3D más grande de Europa.

El promotor del proyecto, a la vez que socio fundador del FabLab, es Marco Durán, un emigrante gallego retornado que se formó en los FabLabs de Londres y Belfast y en la Makerversity de la capital británica. Esta última le ha servido de modelo en Vigo: «En Londres aprendí, vi que aquí no había nada y me vine. Usaremos máquinas colaborativas y habrá coexistencia con free-lances», ha declarado Durán. Solicitó la marca de FabLab hace dos años y en noviembre MakerSpace de Madrid confirmó a Vigo como miembro oficial.

Durán apostó por formar la cooperativa y fichó a dos socios, Iván Martínez y el aparejador Anselmo Crespo. «Era el formato más cercano al FabLab», declaró a La Voz de Galicia. Se ha especializado  en dar cursos y en formar a alumnos en robótica e impresión 3D. Los 60.000 euros aportados por los socios cooperativistas fundadores cubrirán gastos este año, por lo que contactarán con inversores externos que necesiten desarrollar prototipos a bajo coste.

A partir de hoy intentarán construir una impresora 3D que alcance los dos metros de largo por los dos de ancho y los dos de fondo y que según estiman sería la más grande de Europa.

Lo harán dentro de la European Maker Week, un proyecto impulsado por la Comisión Europea y la Maker Fair de Roma.

 

 

“El evento durará una semana, del 23 al 29 de octubre y pretende generar eventos simultáneos en toda Europa, en 28 países, relacionados con el mundo maker, entre los que se encuentran FabLabs, laboratorios maker o centros educativos”, añadió Durán.

La construcción de la máquina gigante costará 5.000 euros y buscan ayuda de patrocinadores. Les respalda el fabricante de maquinaria customizada Tuco Systems, uno de sus socios proveedores.

Los montadores retransmitirán en directo por streaming cómo insertan cada pieza de su impresora 3D paso a paso y minuto a minuto. Tendrán como público a los miles de colegas que se han inscrito en el evento European Marker Week,  en la que intervendrán aficionados de 28 países que estarán conectados por Internet desde sus respectivas ciudades.

 

 

En el caso de Vigo, cualquier persona que lo desee podrá pasarse por la FabLab y ver cómo se realizan los trabajos, incluso en algún momento podrían  cooperar si así fuese necesario. Los promotores del proyecto dudan de que finalmente puedan realizar una copia a escala natural del Dinoseto, el popular dinosaurio vegetal de la ciudad. Estiman que les llevaría mucho tiempo y que costaría unos 600 euros.

 

Origen: Hoy empieza a construirse la impresora 3D más grande de Europa 

El primer coche impreso en 3D

El primer coche impreso en 3D.

 

El Urbee 2 es el primer coche fabricado con técnicas de impresión 3D. Se caracteriza por ser un híbrido de 3 ruedas muy ligero. Su creador, Jim Kor, hace énfasis en la responsabilidad ecológica que cumple el coche y en la seguridad que proporcionará al consumidor.

La tecnología 3D llega a los vehículos gracias a Jim Kor, el creador del primer coche impreso en 3D: un híbrido de 3 ruedas y de modelo Urbee 2. La consistencia del vehículo es robusta a la par que ligera, y su composición es de plástico principalmente, aunque el motor y el chasis son de acero.

Esta tecnología simplifica mucho el proceso de fabricación y ensamblaje de los vehículos; en vez de diseñar muchas piezas para montarlas posteriormente, con las impresoras 3D basta con esculpir una sola. A pesar de esta sencillez, la seguridad del coche estará garantizada, pues Kor ha prometido que se someterá a las inspecciones tecnológicas que sean convenientes.

Para Jim Kor, una de las características fundamentales de su coche es el compromiso que mantiene con el medio ambiente, haciendo honor a la filosofía de su empresa Kor Ecologic; “usar el mínimo de energía posible por cada kilómetro y contaminar lo menos posible en el proceso de fabricación, funcionamiento y posterior reciclado del coche”.

Las grandes corporaciones y gobiernos han sido los primeros en usar esta tecnología en sectores como la medicina o la arquitectura. Las ventajas que supone el desarrollo de este dispositivo para el avance de la ciencia podrían ser la solución a muchas incógnitas y problemáticas hoy día irresolubles. Por ejemplo, hace un año se logró trasplantar una mandíbula de titanio creada con una impresora 3D y, el mes pasado, se empezaron a crear células madre vivas en una impresora 3D para regenerar tejidos.

El precio de este tipo de impresora ha empezado a bajar recientemente para poder ajustarse a las necesidades de las pequeñas empresas. Las impresoras ZPrinter 150 y ZPrinter 250 (desde 15.000 dólares) salieron en 2010 haciendo asequible la impresión en 3D.

Origen: El primer coche impreso en 3D

‘Capa invisible’ con una impresora 3D doméstica

Capa invisible’ con una impresora 3D doméstica.

 

Las capas de invisibilidad se disponen a salir de los laboratorios y podrían llegar muy pronto a los hogares. Hasta ahora, en efecto, se había conseguido ya fabricar materiales capaces de hacer “desaparecer” objetos que se coloquen debajo. Pero se trataba siempre de experimentos complicados y para los que se necesitaba un equipamiento sólo al alcance de un puñado de expertos. Ahora, sin embargo, en un laboratorio de la Universidad de Duke (Carolina del Norte, Estados Unidos) han ido bastante más lejos y afirman que cualquiera podría, con una impresora 3D doméstica, fabricar su propia capa de invisibilidad en una sola noche y sin salir de casa. El trabajo se acaba de publicar en la revista “Optics Letters”.

El proceso resulta barato y sencillo, y puede realizarse en poco tiempo, entre tres y siete horas. “Yo diría que básicamente cualquier persona que pueda pagar un par de miles de dólares en una impresora 3D podría hacer una capa de plástico invisible literalmente en una noche”, asegura el ingeniero Yaroslav Urzhúmov, de la Universidad de Duke.

Las impresoras 3D imprimen objetos sólidos a partir de un diseño por ordenador. Para ello, la impresora va depositando, de abajo arriba capas de diferentes materiales. La técnica, una auténtica revolución, cada vez se utiliza con más asiduidad para elaborar todo tipo artículos de plástico, metal, vidrio o cerámica.

La capa invisible fabricada en las pruebas de Duke tiene la apariencia de un queso gruyer y está hecha de dos materiales: plástico ABS, muy resistente a los golpes, y aire. El objeto en cuestión mide 3 centímetros de grosor y podría cubrir 14 centímetros de diámetro, aunque es posible unir varias piezas hasta obtener el tamaño deseado. La invisibilidad está en relación con la cantidad de microondas que la capa pueda emitir.

David Smith, coautor del estudio, explica que la luz atraviesa el material de la capa, de manera que al situarse sobre un objeto opaco los hilos de fibra óptica del plástico se doblan sobre el objeto. Entonces se dejan huecos similares a agujeros que dejan pasar la luz, aunque no permiten observar que debajo hay algo.

Un objeto de varios metros.

En experimentos anteriores se había incluido metal, pero en esta ocasión sólo se ha utilizado plástico, lo que favorece su fabricación y su manejo, pues es más ligero. Las aplicaciones pueden ser de uso militar o civil. De hecho, la investigación ha sido financiada por la Oficina de Investigación del Ejército estadounidense. “Si se quieren eliminar obstáculos como pilares o pequeños edificios se pueden usar estas capas, lo que podría ser útil para la comunicación y para el radar”, aclara Urzhúmov.

¿Pero es posible crear capas invisibles más grandes? “Las simulaciones por ordenador me hacen creer que es posible crear una capa de invisibilidad a base de polímero muy fina que envuelva un objeto de varios metros de diámetro -comenta Urzhúmov-. Se puede imaginar cubriendo algo tan grande como un pilar de piedra o los mástiles metálicos de un barco”.

Los investigadores estiman que la nanotecnología facilitará ir más allá de las microondas y trabajar con mayores longitudes de onda y con materiales como vidrios transparentes y polímeros. Esto supondría un paso más en el nivel de invisibilidad.

 

Origen: ‘Capa invisible’ con una impresora 3D doméstica

Diseñan un rascacielos que construirá sus apartamentos a golpe de impresión 3D

Diseñan un rascacielos que construirá sus apartamentos a golpe de impresión 3D.

El creador de este futurista proyecto ha tratado que el edificio emule a una máquina expendedora de viviendas que los residentes podrán personalizar

Un rascacielos-ciudad con playas y parques en su superficie

Que el mundo del futuro lo va a imprimir una impresora 3D no es nada nuevo. Desde prótesis u órganos completamente funcionales a los hábitats de los primeros colonos del planeta rojo, esta innovadora tecnología que promete abaratar costes, construir por sí misma y mejorar la calidad de lo que produzca, va a ser esencial para los próximos pasos de la humanidad. Valiéndose de la impresión 3D, el joven arquitecto malasio Haseef Rafiei ha diseñado un rascacielos que es capaz de imprimir sus propios apartamentos al gusto de los interesados.

¿Su localización? En la ciudad del Manga y de los robots, Tokio. ¿Por qué? En el vending está la clave. La pasión que la capital japonesa siente hacia la robótica y la tecnología ha modelado la conciencia de sus gentes hacia la constante interacción con las máquinas con el fin de automatizar todos los procesos posibles, es decir, dejarlos en manos de los familiares de Wall-e.

 

Tanto en el Japón rural como en el metropolitano, no se puede avanzar muchos metros sin encontrarse una máquina expendedora, y es que, cuenta la leyenda que hay una por cada 23 personas. Demasiadas para tratarse de un país que tiene una población de alrededor de 130 millones de habitantes. Las jidohanbaiki (como se llaman en japonés) están por todos lados y venden de todo (¿quién no ha oído sobre las máquinas expendedoras que venden ropa de interior usada?).

Rafiei se ha inspirado en estas premisas para diseñar Pod Vending Machineel primer rascacielos que expende viviendas. ¿El objetivo? Automatizar el mercadoinmobiliario. El edificio será como una especie de marco de construcción con una impresora 3D de dimensiones colosales en su cima y que sería la que se encargaría de imprimir en el aire las viviendas .

Como si de un refresco se tratase, los clientes elegirían en una máquina de vending las características de su futura casa, diseñándola habitación por habitación (lo que les convierte en el arquitecto de tu propia casa). Una vez el diseño esté finalizado, y el apartamento impreso, unas gigantescas grúas acopladas al edificio se encargarían de fijar la nueva vivienda al rascacielos.

Pero aún hay más, luchando contra el exceso de residuos en la industria de la construcción con la que fue concebido Pod Vending Machine, si algún apartamento ha sido creado para “usar y tirar” y no va a volver a ser utilizado, podrá ser desmontado y usado para construir otros nuevos. Además, las viviendas no han de estar fijadas eternamente en la misma posición, ya que podrán ser reorganizadas según las necesidades y situaciones que se den en este ecosistema de metal, como si el edificio jugara al Tetris.

Del mismo modo, si la torre no tiene huecos para más viviendas, esta podría crecer. Gracias a la ayuda de sus brazos mecánicos (grúas) sería capaz de colocar más pisos en su cima, algo así como un rascacielos vivo que se construye así mismo según las demanda de sus células (residentes).

Sin duda, se trata de una propuesta futurista y actualmente inviable, pero el diseño está ahí. ¿Quién sabe si en los próximos años no se hará realidad? Al menos, se han sentando los pilares.

Origen: ELMUNDO

 

La empresa que logra imprimir en 3D el cobre a escala industrial 

La empresa que logra imprimir en 3D el cobre a escala industrial.

GH Electrotermia y Aidimme han adaptado la fabricación aditiva para crear piezas con este material. Ya lo usan firmas como Renault y Volvo.

Aunque existe desde los años 20, fue con la Segunda Guerra Mundial cuando se popularizó. El calentamiento por inducción cumplía con la urgencia en los tiempos de guerra. Endurecer, unir o ablandar metales para el motor a un ritmo alto y constante. Un siglo después de su nacimiento, esta técnica sigue manteniendo su protagonismo en un sinfín de industrias: automoción, aeroespacial, eólica, médica, maquinaria, ferroviaria, cables de alta tensión… Cada aplicación requiere un inductor único. Ninguno es igual que otro. Y en eso, la empresa GH Electrotermia, con sede en Valencia, es especialista. Sin embargo, los métodos artesanales que se utilizan en la fabricación de estas piezas chocan de frente con las necesidades de escalabilidad y productividad. La respuesta la han encontrado con Aidimme, el centro tecnológico metalmecánico y de la madera, en la fabricación aditiva. Juntos han ideado el primer sistema de impresión 3D de cobre puro a escala industrial.

En 1985, GH Electrotermia ya creó su propio departamento de I+D. Un año después, lanzó el primer generador a transistores del mundo. Hoy, da empleo a 150 personas (el 70% ingenieros) y factura más de 50 millones de euros. En diciembre de 2016, el 100% de la empresa fue adquirido por el grupo norteamericano ParkOhio. Todo ello, gracias a los inductores. Estas piezas son las encargadas de generar un campo magnético que se utiliza para calentar piezas industriales que después se usan, por ejemplo, en el motor de un coche. ¿Para qué necesitan calor? «Hay que templarlas para darles mayor dureza, si no, con la fricción del uso acabarían rompiéndose», explica el CEO, Vicente Juan.

El principal problema de estos inductores es que se someten a un desgaste muy fuerte. Como sus componentes están soldados entre sí, cada vez que se enfrían y calientan, estas juntas van rompiéndose. ¿El resultado? Su ciclo de vida es corto y para crear el repuesto, al hacerse de forma tan manual, es complicado que sea exactamente igual que el anterior.

GH Electrotermia lleva tiempo buscando una alternativa. Hace unos años, probó con la microfusión, la misma técnica que se usa en joyería. Aquí se utilizaba un molde cerámico en el que se introducía una aleación de plata. Pero presentaba dos desventajas: el coste del material y la porosidad de la pieza final. «El agua traspasaba su interior», indica el director técnico, Pedro Moratalla.

La empresa necesitaba un sistema que garantizase la repetitividad de producción y la durabilidad de los inductores. La fabricación aditiva se presentó entonces como una posibilidad, pero ellos no tenían el conocimiento de la tecnología. Decidieron, pues, aliarse con un experto en la materia. Y lo encontraron cerca de casa, en Aidimme.

Pero en el mercado no había nada con cobre, que presenta la suficiente conductividad eléctrica para los inductores y resulta más económico que la plata. Así que el instituto tuvo que desarrollar una solución propia. Tres años más tarde, GH Electrotermia y Aidimme son los únicos capaces de imprimir cobre puro en 3D a nivel industrial. Una técnica de la que ya se está beneficiando Renault, en Valladolid, Scania, en Suecia, Volvo Skoda.

La máquina en cuestión no es una impresora 3D al uso, con un cabezal que va depositando el material; sino que encaja en el campo de la fusión de lecho de polvo (EBM). Aquí el polvo de cobre se coloca en contenedores que lo suministran a la máquina. El material se reparte en una capa uniforme de 60 micras de grosor. «Entonces se calienta para conducir el calor a todo el lecho y que las partículas estén más receptivas», explica el responsable de I+D y mercados estratégicos de Aidimme, Luis Portolés. Después comienza la fase de fusión, donde el haz de electrones funde el polvo de cobre que se quiere solidificar. Básicamente se reduce a repartir material, calentar y fundir. Así, capa por capa, hasta obtener la geometría completa.

El equipo es capaz de fabricar entre 12 y 16 bovinas en cada tirada. «No tiene sentido hacer una sola pieza por producción», señala el responsable de nuevos procesos de fabricación de Aidimme, José Ramón Blasco. «No hay nadie que pueda hacerlo así, industrialmente», añade. Uno de los grandes logros de esta colaboración instituto-empresa ha sido eliminar los problemas de porosidad. Los inductores están diseñados con canales por dentro para que pase el agua cuando se enfrían. Los investigadores han conseguido eliminar esos poros a pesar de la delgadez de las paredes de la pieza.

Y, todo ello, ¿para qué? Las ventajas de la nueva tecnología son muchas. Una es la productividad. «Somos capaces de fabricar entre 16 y 24 piezas por semana», dice Blasco. Además, con la impresión 3D, al eliminar las soldaduras, aumenta el ciclo de vida de los inductores. «Como mínimo, se duplica, pero en algunos casos hasta se triplica», afirma el CEO de GH Electrotermia. Sin olvidar la personalización de los productos, ya no sólo de los inductores, que se pueden adaptar a las piezas que se van a inducir, sino de las propias piezas, que ya no están limitadas por las posibilidades de los inductores. Y, por último, el coste. «Cuando ya tienes el proceso industrializado, el coste es menor», agrega Moratalla.

Origen: La empresa que logra imprimir en 3D el cobre a escala industrial.

Página 1 de 912345...Última »
Ir a la barra de herramientas